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ABSTRACT - This paper introduces a new approach
based on fuzzy logic techniques for microwave circuit
design. The Fuzzy Logic System (FLS) is constructed using
data pairs generated from an EM simulator. A 3-pole

microstrip filter is used to demonstrate the concept. The

FLS is employed as a design tool to directly synthesize the
filter physical dimensions for a required filter response.
Theoretical results for three filters having different
bandwidths are presented to demonstrate the validity of
the proposed approach.

Index Terms—CAD, fuzzy logic, fuzzy logic systems,
microwave filters, circuit design, computer-aided design,
microwave circuits.

I. INTRODUCTION

Over the past years, several techniques based on neural
networks [1]-[2] and Cauchy methods [3]-[4] have been
introduced as fast and flexible EM- based tools for microwave
modeling. With the use of training data generated from the EM
simulator, these techniques have been successful in building a
model that can be used to replace the EM simuiator. However,
the role of these models has been limited to simulation
allowing the prediction of the scattering parameters of the
circuit for given physical dimensions, i.e. the forward problem.
While these models [1]-[4] are fast and accurate they still need
to be integrated with optimization tools to complete the design
process.

More recently, the feasibility of using Fuzzy Logic
Systems (FLS) in diagnosis and tuning of microwave filters
has been demonstrated in [5]-[6]. FLS techniques-can be
implemented to deal directly with the reverse problem i.e. for
given filter scattering parameters, the FLS model would
predict the physical dimensions. In fact, the filter design
problem and the filter diagnosis problem can be basically
viewed as the same problem where the de-tuned filter response
is replaced by the required ideal filter response while the
coupling elements are replaced by the filter circuit physical
dimensions, In the diagnosis problem, a theoretical coupling
matrix model can be combined with measured data as well as
expert information to generate the if-then rules of the FLS,
while in the design problem, the if-then rules are generated
using an EM simulator.

In this paper, we demonstrate how fuzzy logic techniques
can be used in the design of microwave circuits. A 3-pele
microstrip filter is used as an example to demonstrate the
proposed approach. Data pairs were gencrated using HPADS,
which are then grouped using subtractive clustering technique
[9] to minimize the number of rules. With the use of Sugeno
fuzzy logic techniques [7], the fuzzy membership functions
were optimized using the initial set of data pairs as well as a
set of checking data pairs.

In this paper, the fuzzy logic model was built to synthesize
the dimensions of filters having different bandwidths and
return loss specifications but with the same center frequency.

" The model can be extended to build a FLS system that can

synthesis dimensions of filters having any center frequency
over a limited frequency range.

II. DEFINITION OF THE PROBLEM

We consider designing a 3-pole Chebyshev microstrip filter
having the layout shown in Fig. 1. As can be seen from Fig. 1,
there are 4 key parameters in the design of this filter structure,
These parameters are: d;, da, {3, and /5.

To start the design process, we need to generate the proper
data pairs to build our FLS. For this problem, we take some
frequency samples at different frequencies of our desired
performance to capture the most important features of the
filter. These scattering values at the sampled frequencies are
considered as inputs to our fuzzy logic system. Once we alter
the 4 dimensions in Fig. 1, the scattering values at sampled
frequencies also change. The outputs of our fuzzy fogic system
are set to be the design dimensions including the resonator
lengths i, I, and gap spacings d;, d;, which represent the
sequential couplings of the filter. With the use of this
information, we obtain a record of input-output data pairs for
building our fuzzy logic system. The data pairs are in the form:
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where we have n data pairs for a system with p sampled
scattering parameters as inputs, and g unknown physical
dimensions as outputs. The above-mentioned data pairs are
obtained using HP-ADS. For our design problem, we consider
here designing filters with a center frequency of 2 GHz. We
also consider bandwidth variations of 0.6-1.2 percent. The
desired return loss for this problem is 15 dB. Fig. 2 shows 3
different examples with 0.6, 0.8, and 1.13 percent bandwidths
respectively. Our goal is to build a fuzzy logic system to
extract the physical dimensions of the filter for different
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Figure 2. Fiiter design responses with different bandwidths

In next sections, we will show how we can get a fuzzy
logic system to directly extract the design dimensions, and will
compare the resulis with regular filter synthesis results.

Ii1. BUILDING THE FUZZY LOGIC SYSTEM

In this paper, we use a method based on Sugeno fuzzy
inference system [7]. Models that employ the Sugeno type
rules have been shown to be able to accurately represent
complex behavior with only a few rules [8], and therefore the
complexity of the system decreases dramatically.

The consequent of rules are no longer fuzzy sets as in [5-
6], but mathematical functions. The most commonly used type
of these systems has rules with linear functions:

IF X isA &X,is A, &...THEN

; . @
YisB &Y,isB,...

where X; is the /" input variable and ¥; is the /™ output variable,
and B; is in the form:

B;=a,+ax +ax,+-- &

The input fuzzy sets, A;, are characterized by Gaussian
membership functions as depicted in Fig, 3.

a.5t N

0

X (input variable)

. Figure 3. Typical Gaussian membership functions for inputs

Each membership function has a function of the form:

N2
X—X.:
. (@

' 1
f, () =exp| ==

where X j' is the center of the membership function for fuzzy

set A;, and o is the standard deviation of the Gaussian
function. We need to determine the center and standard
deviation of the Gaussian functions, along with the fuzzy rules
to build the FLS,

In order to determine the fuzzy rules, we follow a
procedure based on subtractive clustering techniques [9].
Using this procedure, we obtain the rules along with the
membership function centers, with the assumption of knowing
the standard deviation of the membership functions. The
standard deviations for the simplest case are considered to be
equal after the training data are normalized. If this assumption
does not give us the desired fuzzy logic system, then theses
parameters can be adjusted separately. We choose the optirnal
standard deviation, the one that gives us the minimum error.

The output of our is calculated using a weighted average
of each rule’s output similar to centroid defuzzification [6]:

DYy
- i=1
DM,
i=1

where gz is the firing strength of each of the i rule, yy is the
output value corresponding to the i rule, and ¢ is the number
of rutes. In next sections, we will show the design results
using our fuzzy logic system.
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IV. INDENTIFICATION OF THE FUZZY LOGIC
SYSTEM FOR THE 3-POLE MICROSTRIP FILTER
DESIGN PROBLEM

Using the algorithm explained in previous sections, we
design our FLS. For this purpose, we divide the data pairs into
two different parts, one to build the fuzzy logic system, and the
other to check the validity of the system function. We call the
former training data pairs, and the latter checking data pairs.
Using the training data pairs for different standard deviations,
we obtain a set of fuzzy logic systems. To find the optimal
value for standard deviations, we take advantage of the
checking data pairs by making a comparison between training
and checking errors for different standard deviations.

For this problem, we need to build a fuzzy system with 4
outputs, since we have 4 unknown dimensions, We use 15
frequency samples of Sz, as inputs to our system. To gengrate
the data, we first determine the range of the dimension values
where the final design can take. Next, we use uniformly
distributed random numbers for a set of input-cutput data.
Then we obtain the sampled scattering parameters using an
HP-ADS. To find the optimal fuzzy system, we separate the
data pairs into training and checking pairs. The root square
error has been used as a measure for checking and training data
error.

For this problem, we generate 800 training data pairs to
build the fuzzy system. We change the standard deviation (o),
and check the error for a checking data set consisting 200 data
pairs. The error variation for training and checking data is
deplcted in Fig. 4.
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Figure, 4. Error variation for training and checking data

As can be seen from Fig. 4, the FLS is optimum, when we
have the smallest error for checking data, which is

corresponding to =094, where r=2.83c0. The optimized
fuzzy system has 12 rules. :

V. RESULTS

To illustrate the performance of our FLS in the design of
our 3-pole Chebyshev microstrip filter, we consider designing

3 different filters with the response plotted in Fig. 2. We also 171

use the regular filter synthesis procedure [10] to design the
same filters. Table 1 shows the physical dimensions extracted
using filter synthesis, while Table 2 shows the extracted
physical dimensions using our optimized fuzzy system for
different bandwidths.

Table 1. Physical dimensions extracted
using filter synthesis

 BW difmm) da(mm) Li{mm) Iy(mm)
0.6% 0.65859 2.19056 17.6153 17.7520
C.8% 0.525523 | 1.92048 17.5498 17.7492
1.13% 0.478957 | 1.79602 17.5210 17.7464
Table 2. Physical dimensions extracted
using the optimized fuzzy logic system
0.6% 0.510000 | 2.17100 17.6100 17.7600
0.8% 0.445100 | 2.00000 17.5801 17.7600
1.13% 0.329900 | 1.80000 17.5199 ' | 17.7600

Figures 5-8 show a comparison between the scattering

parameters corresponding to the synthesized physical
dimensions and those extracted using the fuzzy logic
approach.
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Figure 5. Comparison between the performances obtained
from synthesis and the fuzzy logic system for BW=0.6%.
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Figure 6. Comparison between the performances obtained

from synthesis and the fuzzy logic system for BW=0.8%.
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Figure 7. Comparison between the performances obtained
from synthesis and the fuzzy logic system for BW=1.13%.
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As it is evident from the results, the response obtained
using synthesis is far from the desired response, while the
fuzzy logic synthesis method gives the physical dimensions
that correspond closely to our design specifications.

VI. CONCLUSION

In this paper, we have proposed a new approach for the
design of microwave circuits based on fuzzy logic systems.
The approach has been demonstrated by considering the design
of 3-pole Chebyshev microstrip filters. The fuzzy logic system
(FLS) is based on Sugeno-type rules, and subiractive
clustering, which efficiently can model the performance of the
system with only a few rules. The data pairs are based on EM
simulation. The standard deviations of the membership
functions are adjusted to find the optimal FLS with minimal
error. The design dimensions extracted with the use of our
optimized FLS satisfies the design requirements, while a
regular filter synthesis gives a response, which is relatively far
from the design goal. The fuzzy logic can be easily applied to
other microwave design problems.
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